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Introduction

Consider the following Itô SDE on [0, T]:

dyt = f(yt)dt+
d∑
i=1

gi(yt)dW i
t , (1)

where y0 ∈ Re,W = (W 1, · · · ,W d) is a d-dimensional Brownian motion
and f, gi : Re → Re are bounded and smooth with bounded derivatives.

Equivalently, we can write the SDE (1) in Stratonovich form:

dyt = f̃(yt)dt+
d∑
i=1

gi(yt) ◦ dW i
t , (2)

where f̃(y) := f(y)− 1
2

∑d
i=1 g ′

i (y)gi(y).

In practice, it is often necessary to numerically approximate SDEs [1, 2].
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Introduction

Consider the following Itô SDE on [0, T]:

dyt = Wt dWt . (3)

Then, we know the solution is given by yt =
∫ t
0 Ws dWs =

1
2

(
(Wt)

2 − t
)
.

We can also approximate (3) using the Euler-Maruyama method:

Yk+1 := Yk +Wtk
(
Wtk+1

−Wtk
)
,

Y0 := y0 ,

where tk := kh and h = T
K for k ∈ {0, 1, · · · ,K}. It is then easy to show

E
[(
YK − y(T )

)2]
=

1

2
hT,

which converges to zero as h → 0 (or, equivalently, as K → ∞).
James Foster (University of Bath) Adaptive approximations for SDEs 7 January 2024 2 / 25



Introduction

What if we make the step size adaptive?
(which is popular in ODEs numerics)

For example, given a fixed λ, we can consider a condition of the form:∣∣Wtk+1
−Wtk

∣∣ ≤ λ
√
h, (4)

to help reduce errors whenW has large fluctuations. In [3], they define

Yk+1 :=

Yk +Wtk
(
Wtk+1

−Wtk
)
, if (4) holds,

Yk +Wtk
(
Wtk+1

2

−Wtk
)
+Wtk+1

2

(
Wtk+1

−Wtk+1
2

)
, otherwise.

Surprisingly however, it was shown in [3, Section 4.1] that this adaptive
Euler method fails to converge to the Itô solution! (as h → 0).
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Introduction
Consider the following SDE:

dyt = W1
t dW2

t , (5)

whereW1 andW2 denote two independent Brownian motions.

We can approximate (5) using Euler-Maruyama or a “trapezium” rule:

Yk+1 := Yk +
1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)
,

Y0 := y0 .

where k ∈ {0, 1, · · · ,K}. By Itô’s isometry, it is straightforward to show

E
[(
YK − y(T )

)2]
=

{
1
2hT if Euler-Maruyama is used
1
4hT if the trapezium rule is used

,

where T = Kh. Hence, we see that the trapezium rule is more accurate.
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Introduction

However, consider the following (less natural) adaptive step size:

We choose either h (i.e. 1 step) or 1
2h (i.e. 2 half-steps) to maximise Y.

Yk+1 = max
{
Yk +

1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)
,

Yk +
1

2

(
W1
tk +W1

tk+1
2

)
W2
tk, tk+1

2

+
1

2

(
W1
tk+1

2

+W1
tk+1

)
W2
tk+1

2
, tk+1

}
,

whereW i
s, t := W i

t −W i
s . Then, for any h > 0,

E
[
YK

]
=

1

8
T,

whereas E
[
yT
]
= 0. So, once again, Y does not converge to the SDE!
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Introduction

The proof follows from Brownian scaling and the following theorem:

Theorem (L1 norm of the determinant of a 2× 2 Gaussian matrix)
Let A,B,C,D ∼ N (0, 1) be independent random variables. Then

E
[
|AD− BC|

]
= 1.

Proof
Can be established by a long calculation [4, Appendix C]. If you know of
this result in the randommatrix literature – please let me know!

This leads to some natural questions...

Question
Do adaptive numerical methods for SDEs converge? If so, when?
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Lévy’s construction of Brownian motion

How can we generate Brownian motion after we halve the step sizes?

𝑢 𝑠 𝑡 

𝑊𝑠 

𝑊𝑢 

𝑊𝑡 

 

 

 

 

Using the notationWa, b := Wb −Wa, we can generateWu afterWt as

Ws, t ∼ N
(
0, (t− s)Id

)
, Ws, u |Ws, t ∼ N

(1
2
Ws, t,

1

4
(t− s)Id

)
.
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The Brownian tree

By recursively applying Lévy’s construction, we can construct a tree:

(mesh size → 0) 

 

1 

This is known as the Brownian tree (introduced in [3]) and also gives a
natural data structure for storing sample paths of Brownian motion [5].
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A “Brownian tree” condition

In our second counterexample, we could “ignore” information about
the Brownian path – as the following update is decided usingWtk+1

2

:

Yk+1 = Yk +
1

2

(
W1
tk +W1

tk+1

)(
W2
tk+1

−W2
tk
)

but then does not use the value ofWtk+1
2

in the approximation itself.

Hence, this goes against the natural direction of the Brownian tree
(indicated by the downwards arrow).

First important condition
If information about the Brownian motion is generated, it must be used
“correctly” (to be explained in condition 2). Equivalently, the numerical
approximation uses all the information at the lowest level of the tree.
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Stochastic Taylor expansions

Consider the Stratonovich SDE (yt ∈ Re and f, gi : Re → Re are smooth)

dyt = f(yt)dt+
d∑
i=1

gi(yt) ◦ dW i
t , (6)

A very useful tool in SDE numerical analysis is the Taylor expansion:

Theorem (Stratonovich-Taylor expansion [2, Thm 5.6.1])
For times 0 ≤ s ≤ t ≤ T, the solution of the SDE (6) can be expanded as

yt = ys + f(ys)h+

d∑
i=1

gi(ys)W i
s,t +

d∑
i, j=1

g ′
j (ys)gi(ys)

∫ t

s
W i
s,u ◦ dW

j
u + R,

where h := t− s and there exists C > 0 such that E
[
∥R∥22

] 1
2 ≤ Ch

3
2 .
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Non-Gaussian integrals involving Brownian motion

The stochastic integrals
{∫ t

s W
i
s,u ◦ dW

j
u
}
1≤ i, j≤d are non-Gaussian and

an algorithm for exact simulation has only been found when d = 2 [6].

Recently, when d = 3, 4, a neural network called “LévyGAN” has been
trained to simulate these integrals [7] (conditional on the increment).

Whilst it empirically outperforms traditional approximations, such as
Fourier series, this neural network does not have a Lévy construction.

Thus, we use the following approximation for these Brownian integrals:

E
[ ∫ t

s
W i
s,u ◦ dW

j
u

∣∣∣Ws,t

]
=

1

2
W i
s,tW

j
s,t . (7)

Among theWs,t-measurable estimators, this minimises the L2(P) error.
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An “integral” condition

Second important condition
The numerical method for the Stratonovich SDE (6) must satisfy

Yk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k +

1

2

d∑
i, j=1

g ′
j (Yk)gi(Yk)W

i
kW

j
k + R,

where h := tk+1 − tk , Wk := Wtk+1
−Wtk and R ∼ o(h) almost surely.

More generally, if the numerical approximation uses certain Gaussian
integrals Wk generated over the interval [tk , tk+1], then we require:

Yk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k

+

d∑
i, j=1

g ′
j (Yk)gi(Yk)E

[ ∫ tk+1

tk
W i
tk ,t ◦ dW

j
t

∣∣∣Wk

]
+ o(h).
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Examples of methods satisfying the integral condition

Milstein’s method*
*using q+ 1 integrals of Brownian motion (which are Gaussian [8, 9])

Yk+1 := Yk + f(Yk)h +

d∑
i=1

gi(Yk)W i
k

+

d∑
i, j=1

g ′
j (Yk)gi(Yk)E

[∫ tk+1

tk W i
tk ,t ◦ dW

j
t
∣∣ {∫ tk+1

tk ( t−tkh )mdWt

}
0≤m≤ q

]
.

Heun’s method (expanding will give 1
2W

i
s,tW

j
s,t instead of

∫ t
s W

i
s,u ◦ dW

j
u )

Ỹk+1 = Yk + f(Yk)h+

d∑
i=1

gi(Yk)W i
k ,

Yk+1 = Yk +
1

2

(
f(Yk) + f(Ỹk+1)

)
h+

1

2

d∑
i=1

(
gi(Yk) + gi(Ỹk+1)

)
W i
k .

Stochastic Runge-Kutta method (based on the “q = 1” approximation)
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Main convergence theorem

Theorem (Convergence of adaptive methods [4, Theorem 2.19])
Let {Y n} be a sequence of numerical solutions to (6) computed at times
Dn = {0 = t n0 < t n1 < · · ·< t nKn = T} so that Dn+1 is determined by Dn and

W n
k :=

{∫ t nk+1

t nk

( t− t nk
h nk

)m
dWt

}
0≤m≤ q

.

Suppose Dn+1 ⊆ Dn and mesh(Dn) → 0 almost surely (condition 1) and∥∥Y nk+1 − Ỹ nk+1

∥∥
2
∼ o(h nk ),

where h nk := t nk+1 − t nk and

Ỹk+1 := Y nk + f(Y nk )h
n
k +

d∑
i=1

gi(Y nk )W
i
t nk ,t

n
k+1

(condition 2)

+

d∑
i, j=1

g ′
j (Y

n
k )gi(Y

n
k )E

[ ∫ t nk+1

t nk
W i
t nk ,t

◦ dW j
t

∣∣∣W n
k

]
.

James Foster (University of Bath) Adaptive approximations for SDEs 7 January 2024 14 / 25



Main convergence theorem

Theorem (Convergence of adaptive methods [4], continued)
We assume Y n0 = y0 and f, {gi} are bounded twice differentiable vector
fields with α-Hölder continuous second derivatives for some α ∈ (0, 1).

More precisely, we assume that∥∥Y nk+1 − Ỹ nk+1

∥∥
2
≤ w(t nk , t

n
k+1),

where
Kn−1∑
k=0

w(t nk , t
n
k+1) → 0,

almost surely. Then the approximations {Y n} converge pathwise. That is

sup
0≤k≤Kn

∥∥Y nk − yt nk
∥∥
2
→ 0,

as n → ∞ almost surely.
James Foster (University of Bath) Adaptive approximations for SDEs 7 January 2024 15 / 25



Ideas in the proof
We first note that the expectation of Brownian motion conditional on
{W n

k }0≤k≤Kn−1 is the unique piecewise degree q+ 1 polynomial which,
on each [t nk , t

n
k+1 ], matches the increment and q integrals ofW [10, 11].∫ t nk+1

t nk

( t− t nk
h nk

)m
dW̃ n

t =

∫ t nk+1

t nk

( t− t nk
h nk

)m
dWt ,

for 0 ≤ m ≤ q, where

W̃ n
t := E

[
Wt | {W n

k }0≤k≤Kn−1

]
.
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Ideas in the proof

Lemma
Define a sequence of σ-algebras {Fn}n≥0 , by F0 := σ

(
{W n

0 } ∪ D0

)
and

Fn+1 := σ
(
Fn ∪ {W n

k } ∪ Dn
)
. By the assumptions in the theorem, {Fn}

is a filtration and W̃ n = E
[
W | Fn

]
is a square-integrable martingale.

(mesh size → 0) 

 

1 
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Ideas in the proof

Using Doob’s martingale convergence theorem and maximal inequality,
we can show that

dp-var;[0,T ]
(
W̃ n

,W
)
→ 0,

as n → ∞ almost surely, where p ∈ (2, 3) and

• W̃ n
is the piecewise polynomial “lifted” to a “p-rough path”

• W is “Stratonovich enhanced” Brownian motion (p-rough path)
• dp-var;[0,T ](X,Y) is the p-variation between p-rough paths X and Y

It is not clear how to prove “rough path” convergence for {W̃ n} without
using the martingale property coming from the nested property of {Dn}.
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Ideas in the proof
By the Universal Limit Theorem (a key result in rough path theory [12]),
it immediately follows that

dp-var;[0,T ]
(
ỹ n, y

)
→ 0,

as n → ∞ almost surely, where

• ỹ n is the solution of the rough differential equation (RDE):

dỹ nt = f
(
ỹ nt

)
dt+ g

(
ỹ nt

)
dW̃ n

t ,

with g(y) := (g1(y), · · · , gd(y)) and initial condition y0 ∈ Re .

• y is the solution of the rough differential equation (RDE):

dyt = f
(
yt
)
dt+ g

(
yt
)
dWt ,

with initial condition y0 ∈ Re .
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Ideas in the proof

Final piece of the puzzle...

d ỹ nt = f
(
ỹ nt

)
dt+ g

(
ỹ nt

)
dW̃ n

t , (8)

Theorem (Controlled Taylor expansion)
For times 0 ≤ s ≤ t ≤ T, the solution of the CDE (8) can be expanded as

ỹ nt = ỹ ns + f(ỹ ns )h+

d∑
i=1

gi(ỹ ns )
(
W̃ n
s,t
) i (9)

+

d∑
i, j=1

g ′
j (ỹ

n
s )gi(ỹ ns )

∫ t

s

(
W̃ n
s,u

) i ◦ d(W̃ n
u
) j

+ o(h),

where h := t− s.
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Ideas in the proof

Theorem (Polynomials optimally approximateW and its integrals)

Wt nk ,t
n
k+1

= W̃ n
t nk ,t

n
k+1

, E
[ ∫ t nk+1

t nk
W i
t nk ,t

◦dW j
t

∣∣∣W n
k

]
=

∫ t nk+1

t nk

(
W̃ n
t nk ,t

) i ◦d(W̃ n
t
) j
.

Theorem (Polynomial-driven CDEs have the desired expansions)
To simply notation, we let ỹ nk denote ỹ nt nk and suppose Ỹ nk+1 satisfies

Ỹ nk+1 = ỹ nk + f(ỹ nk )h
n
k +

d∑
i=1

gi(ỹ nk )W
i
t nk ,t

n
k+1

(10)

+

d∑
i, j=1

g ′
j (ỹ

n
k )gi(ỹ

n
k )E

[ ∫ t nk+1

t nk
W i
t nk ,t

◦ dW j
t

∣∣∣W n
k

]
+ o(hnk).

Then ∥∥Ỹ nk+1 − ỹ nk+1

∥∥
2
= o(hnk). (11)
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Numerical experiment

We consider a stochastic Lotka-Volterra predator-prey model [13]:

drt = rt(2− ft)dt+
√
rt(2 + ft)dW 1

t ,

dft = ft(rt − 1)dt+
√
ft(rt + 1)dW 2

t ,

where (r0 , f0) = (100, 10). We estimate the L2(P) error at T = 0.5.
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Numerical experiment

We compare a variety of methods and strategies for choosing step sizes
(non-previsible means it depends on future values of Brownian motion)

 

However, methods with adaptive steps (whilst slightly more accurate)
are much slower to run!
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Conclusion and future work

Conclusion

• Numerical methods that use adaptive step sizes are popular for
ODEs, but can experience convergence issues in the SDE setting.

• Using rough paths, we showed that convergence occurs for a large
class of adaptive methods (including Milstein and Heun schemes).

• The main idea is that whenever information about W is generated,
it must be used (condition 1) in a “correct way” (condition 2).

Future work

• Can we establish explicit convergence rates for adaptive methods?

• When is it acceptable for step sizes to “skip” information aboutW ?

• Faster implementations of adaptive methods (e.g. using Diffrax [5])
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Thank you
for your attention!

and the preprint can be found at:

J. Foster. On the convergence of adaptive approximations for stochastic
differential equations, arxiv:2311.14201, 2023.
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